ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

Yoshio Agaoka*, Byung Hak Kim** and Jin Hyuk Choi**
*Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
**Department of Mathematics and Institute of Natural Sciences, Kyung Hee University, Suwon 449-701, Korea

Abstract

Let M be a 3-dimensional almost contact metric manifold satisfying (*)-condition. We denote such a manifold by M^{*}. We prove that if M^{*} is η-Einstein, then M^{*} is either Sasakian or cosymplectic manifold, and is a space of constant curvature. Consequently M^{*} is either flat or isometric to the 3 -dimensional unit sphere if M^{*} is complete and simply connected.

1. Introduction

The conformal curvature tensor C is invariant under conformal transformations and vanishes identically for 3-dimensional manifolds. Using this fact many authors [1, 3, 4, 6] studied 3-dimensional almost contact manifolds. In [5], they introduced a new class of almost contact manifold M^{*} containing quasi-Sasakian and trans-Sasakian structure. Moreover they constructed non-trivial examples. In this paper, we study a 3dimensional η-Einstein manifold M^{*} by use of the fact that C vanishes identically and the special form of Ricci curvature. Consequently, we prove that the 3-dimensional η-Einstein manifold M^{*} becomes either Sasakian or cosymplectic manifold, and is a space of constant curvature. In the cosymplectic case, M^{*} is flat, and if M^{*} is Sasakian, complete and simply connected, then M^{*} is isometric to the 3-dimensional unit sphere, that is M^{*} is either flat or isometric to $S^{3}(1)$ under this topological condition.

2. Almost contact metric structure

Let M be an m-dimensional real differentiable manifold of class C^{∞} covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, in which there are given a tensor field ϕ of type (1,1), a vector field ξ and a 1-form η satisfying

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1 \tag{2.1}
\end{equation*}
$$

for any vector field X on M. Such a set of (ϕ, ξ, η) is called an almost contact structure and we call a manifold with an almost contact structure an almost contact manifold. In an almost contact manifold, if there is given a Riemannian metric g such that

Key words: Conformal curvature tensor, almost contact metric manifold, space of constant curvature.
${ }^{* *}$ This work was supported by ABRL Grant Proj. No. R 14-2002-003-01000-0 from KOSEF and Engineering Foundation.
Received October 1 2002; Accepted November 12002

$$
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for all vector fields X and Y on M, we say M has an almost contact metric structure and g is called a compatible metric. Setting $Y=\xi$, we have immediately $\eta(X)=g(X, \xi)$.

The fundamental 2 -form Φ is defined by $\Phi(X, Y)=g(\phi X, Y)$. It is known that the almost contact structure (ϕ, ξ, η) is normal if and only if the Nijenhuis tensor

$$
N(X, Y)=[\phi, \phi](X, Y)+2 d \eta(X, Y) \xi
$$

vanishes, where [,] is a bracket operation and d denotes the exterior derivative. An almost contact metric structure (ϕ, ξ, η, g) on M is said to be
(a) Sasakian if $\Phi=d \eta$ and (ϕ, ξ, η) is normal,
(b) cosymplectic if Φ and η are closed and (ϕ, ξ, η) is normal.

In [5], one of the present author defined a new class of almost contact metric structure on M which satisfies
(*) $\quad d \Phi=0, \quad \nabla_{x} \xi=\lambda \phi X$ and (ϕ, ξ, η) is normal
for a smooth function λ on M and ∇ denotes the Riemannian connection for g. Briefly, we denote such a manifold by M^{*}. It is easily seen that M^{*} is cosymplectic if $\lambda=0$, and Sasakian if λ is a non-zero constant.

Theorem 1 [5]. On M^{*}, we have

$$
\begin{equation*}
R(X, \xi) Y=(X \lambda)(\phi Y)+\lambda^{2}\{\eta(Y) X-g(X, Y) \xi\} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\xi \lambda=0, \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(Y, Z)=\lambda\{\eta(Y) g(X, Z)-\eta(Z) g(X, Y)\}, \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
S(\xi, X)=(\phi X) \lambda+(m-1) \lambda^{2} \eta(X) \tag{2.5}
\end{equation*}
$$

where S is the Ricci curvature tensor and R is the curvature tensor defined by

$$
R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z .
$$

3. 3-dimensional almost contact manifolds

Let M^{*} be a 3-dimensional manifold satisfying (*). It is well known [2] that the conformal curvature tensor of Weyl vanishes identically for 3-dimensional manifolds. Therefore the curvature tensor R of a 3dimensional manifold M^{*} is given by

$$
\begin{align*}
R(X, Y) Z= & -S(X, Z) Y+S(Y, Z) X-g(X, Z) Q Y \tag{3.1}\\
& +g(Y, Z) Q X+\frac{r}{2}\{g(X, Z) Y-g(Y, Z) X\},
\end{align*}
$$

where r is the scalar curvature and Q is defined by $g(Q X, Y)=S(X, Y)$. Using (2.3), (2.5) and (3.1), we have

$$
\begin{align*}
S(X, Y)= & \eta(X)(\phi Y) \lambda+\eta(Y)(\phi X) \lambda \tag{3.2}\\
& +\left(\frac{r}{2}-\lambda^{2}\right) g(X, Y)+\left(3 \lambda^{2}-\frac{r}{2}\right) \eta(X) \eta(Y)
\end{align*}
$$

If we substitute (3.2) into (3.1), then we get

$$
\begin{align*}
& R(X, Y, Z, W)=g(R(X, Y) Z, W) \tag{3.3}\\
&=-\eta(X)((\phi Z) \lambda) g(Y, W)-\eta(Z)((\phi X) \lambda) g(Y, W) \\
&+\eta(Y)((\phi Z) \lambda) g(X, W)+\eta(Z)((\phi Y) \lambda) g(X, W) \\
&-\eta(Y)((\phi W) \lambda) g(X, Z)-\eta(W)((\phi Y) \lambda) g(X, Z) \\
&+\eta(X)((\phi W) \lambda) g(Y, Z)+\eta(W)((\phi X) \lambda) g(Y, Z) \\
&+\left(2 \lambda^{2}-\frac{r}{2}\right)\{g(X, Z) g(Y, W)-g(Y, Z) g(X, W)\} \\
&+\left(\frac{r}{2}-3 \lambda^{2}\right)\{(\eta(X) g(Y, W)-\eta(Y) g(X, W)) \eta(Z) \\
&+(\eta(Y) g(X, Z)-\eta(X) g(Y, Z)) \eta(W)\}
\end{align*}
$$

If we put $Y=\xi$ in (3.3), then by (2.3) we obtain

$$
\begin{aligned}
& \quad \begin{array}{l}
(X \lambda) \Phi(Z, W)+\lambda^{2}\{\eta(Z) g(X, W)-\eta(W) g(X, Z)\} \\
= \\
\quad \lambda^{2}\{\eta(Z) g(X, W)-\eta(W) g(X, Z)\} \\
\\
+((\phi W) \lambda)\{\eta(X) \eta(Z)-g(X, Z)\} \\
\end{array} \begin{array}{l}
-((\phi Z) \lambda)\{\eta(X) \eta(W)-g(X, W)\}
\end{array}
\end{aligned}
$$

that is

$$
\begin{equation*}
(X \lambda) \Phi(Z, W)=((\phi W) \lambda)\{\eta(X) \eta(Z)-g(X, Z)\} \tag{3.5}
\end{equation*}
$$

$$
-((\phi Z) \lambda)\{\eta(X) \eta(W)-g(X, W)\}
$$

or in local components

$$
\begin{equation*}
\lambda_{k} \Phi_{i h}=\phi_{h}^{t} \lambda_{t}\left(\eta_{i} \eta_{k}-g_{i k}\right)-\phi_{i}^{t} \lambda_{t}\left(\eta_{h} \eta_{k}-g_{h k}\right) \tag{3.6}
\end{equation*}
$$

where $\lambda_{k}=\partial_{k} \lambda$ and the indices i, j, k, t run over the range $\{1,2, \ldots, m\}$. From (3.5) or (3.6), we can calculate

$$
\begin{equation*}
\left\|\nabla_{k} \Phi_{i j}\right\|^{2}=\left(\lambda_{k} \Phi_{i j}\right)\left(\lambda^{k} \Phi^{i j}\right)=4\left\|\lambda_{t}\right\|^{2}-2\left\|\phi_{i}^{t} \lambda_{t}\right\|^{2} \tag{3.7}
\end{equation*}
$$

where $\lambda^{k}=g^{i k} \lambda_{i}$. Moreover we can easily see that

$$
\left\|\phi_{i}^{t} \lambda_{t}\right\|^{2}=\left\|\lambda_{t}\right\|^{2}
$$

Lemma 2. In a 3-dimensional manifold M^{*}, the function λ is constant if and only if $(\phi X) \lambda=0$ for all X.

If the Ricci curvature S on M is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{3.8}
\end{equation*}
$$

then M is called an η-Einstein space [1,6,7]. If M^{*} is η-Einstein, then we have

$$
\begin{equation*}
3 a+b=r \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
a+b=r-4 \lambda^{2} \tag{3.10}
\end{equation*}
$$

by use of (2.1), (3.2) and (3.8). Hence we get $a=2 \lambda^{2}$ and $b=r-6 \lambda^{2}$. Therefore the Ricci curvature S becomes

$$
\begin{equation*}
S(X, Y)=\left(2 \lambda^{2}\right) g(X, Y)+\left(r-6 \lambda^{2}\right) \eta(X) \eta(Y) . \tag{3.11}
\end{equation*}
$$

If we put $Y=\xi$ in (3.11), then we get
(3.12) $\quad(\phi X) \lambda=\left(r-6 \lambda^{2}\right) \eta(X)$
from (2.5) and (3.11). If we set $X=\xi$ in (3.12), then it gives
(3.13) $r=6 \lambda^{2}$,
that is
(3.14) $(\phi X) \lambda=0$
and that
(3.15) $S(X, Y)=2 \lambda^{2} g(X, Y)$
from (3.11). We see that λ is constant from Lemma 2 and (3.14). Since 3 -dimensional Einstein space is a space of constant curvature, we obtain the following theorem by using Lemma 2, (3.14) and (3.15).

Theorem 3. Let M^{*} be a 3-dimensional η-Einstein manifold. Then M^{*} is a space of constant curvature. Moreover M* is either Sasakian or cosymplectic manifold.

In case $\lambda=0$, since M^{*} is a space of constant curvature, we have $r=0$ and hence $R(X, Y) Z=0$, that is M^{*} is flat.

On the other hand, E. M. Moskal obtained the following result (cf. [7]).

Theorem 4. Let M be a complete and simply connected Sasakian manifold. If M is Einstein and of positive curvature, then it is isometric to the unit sphere.

If λ is non-zero constant, then M^{*} is Sasakian. Therefore this fact and Theorems 3 and 4 reduce

Theorem 5. Let M^{*} be a 3-dimensional η-Einstein manifold. Then M^{*} is either flat or isometric to $S^{3}(1)$ if M^{*} is complete and simply connected.

Acknowledgement. The authors would like to express their thanks to the referee for his careful reading and helpful suggestions.

References

1. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, PM203, Birkhäuser, Berlin (2002).
2. B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York (1973).
3. F. Gouli-Andreou and P. J. Xenos, On a class of 3-dimensional contact metric manifolds, J. Geom., 63 (1998), 64-75.
4. J. B. Jun, I. B. Kim and U. K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J., 34 (1994), 293-301.
5. J. H. Kwon and B. H. Kim, A new class of almost contact Riemannian manifolds, Comm. Korean Math. Soc., 8 (1993), 455-465.
6. S. Sasaki, Almost contact manifolds, Lecture notes, Mathematical Institute, Tohoku Univ. 1 (1965).
7. S. Tanno, Promenades on spheres, Tokyo Inst. Tech., Tokyo (1996).
