Experiment Measurement of COD (simplified assay)

Purpose

The biggest cause to pollute a river is household effluent. So, the purpose of this experiment is measuring COD of soy sauce, milk and orange juice which we throw into a sink directly.

Principle

COD (Chemical Oxygen Demand) is a measurement of the oxygen required to oxidize soluble and particulate organic matter in water.
The method involves using a strong oxidizing chemical, potassium permanganate KMnO_{4}, to oxidize the organic matter in solution to carbon dioxide and water under acidic conditions. The amount of oxygen required is calculated from the quantity of KMnO_{4} (chemical oxidant) consumed.

Preparation

Conical beaker ($100 \mathrm{~mL} \times 3$)Magnetic stirrerStir barPipette (2 mL)Graduated cylinder (50 mL)$0.01 \mathrm{~mol} / \mathrm{L}$ potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ solution$3 \mathrm{~mol} / \mathrm{L}$ sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ solutionDistilled waterRiver waterSoy sauce (1,000 times diluted) $\quad \square$ Milk (1,000 times diluted)Orange juice (1,000 times diluted)

Procedure

1. Put a stir bar into a conical beaker.
2. Put 50 mL distilled water into the conical beaker with a graduated cylinder.
3. Put 2 mL sulfuric acid into the conical beaker with a pipette.
4. Put the conical beaker on a magnetic stirrer.
5. Drop a drop of a potassium permanganate solution with a pipet under agitation (if the rotary speed of the stirring bar is too fast, this situation is dangerous because solution splashes.) and confirm a color.
※This color (light purple-red) is standard when you determine whether the reaction is finished.
6. Drop a potassium permanganate solution drop by drop after having operated procedure 1 and 2 about river water, the soy sauce or milk or orange juice. When a color of potassium permanganate which I confirmed in procedure5 (light purple-red), even if the terminal waits for 30 seconds does not disappear, record the number of drops.
※Be careful about sulfuric acid and potassium permanganate.

Result

Sample	River water	Soy sauce $(1,000$ times diluted $)$	Milk $(1,000$ times diluted $)$	Orange juice $(1,000$ times diluted $)$
Number of Drops				

Conclusion

Sample	River water	Soy sauce $(1,000$ times diluted $)$	Milk $(1,000$ times diluted $)$	Orange juice $(1,000$ times diluted $)$
COD $[\mathbf{m g} / \mathbf{L}=\mathbf{p p m}]$				

1 drop of $\mathrm{KMnO}_{4} \mathrm{aq}=0.04 \mathrm{~mL}$, Ratio of amount of substance $\mathrm{KMnO}_{4}: \mathrm{O}=2: 5$, atomic weight $\mathrm{O}=16$
Chemical reaction of conversion : $2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+\underline{5} \mathbf{O}$

